bisects the angles $\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1 a$ and $\mathrm{N} 3-\mathrm{Co}-\mathrm{C} 3 a$. With the exception of $\mathrm{N} 1 a$ and $\mathrm{N} 3 a$, only the atoms on the crystallographically unique half of the molecule are labelled and will be used to describe the structure. (1) is an octahedral complex with two axially coordinated tetrafluoroborate ligands and four equatorial pyrazole ligands. Selected bond lengths and angles are given in Table 2. The $\mathrm{Co}-\mathrm{F}$ bond lengths of $2 \cdot 190$ (3) \AA in (1) are only slightly longer than the 2.05 (2) and 2.04 (1) \AA found in CoF_{2} (Stout \& Reed, 1954). The Co-F1-B1 bond angle of $151.9(6)^{\circ}$ falls within the wide range ($126-180^{\circ}$) observed for monodentate BF_{4}^{-}ligands. The coordination of the BF_{4}^{-}ligand results in the expected elongation of the $\mathrm{Bl}-\mathrm{F} 1$ bond to $1.422 \AA$ compared with the average bond length ($\mathrm{B}-\mathrm{F}_{\mathrm{ave}}=$ $1 \cdot 363 \AA$) of the non-coordinated F atoms. Bond angles within the BF_{4}^{-}ligand are unexceptional, ranging from $105 \cdot 6(8)$ to $115 \cdot 8(9)^{\circ}$. These data suggest that the tetrafluoroborate anions in (1) can be described as 'normal' (Tomlinson, Bonamico, Dessy, Fares \& Scaramuzza, 1972) BF_{4}^{-}ligands. An alternative description of the complex as a BF_{3} adduct of a cobalt fluoride (Burch, Calabrese \& Ittel, 1988) appears inappropriate in this case. The remaining bond lengths and angles about Co show only small deviations from an idealized octahedron. The planes of the pyrazole rings are twisted out of the equatorial plane of the octahedron to minimize steric interactions, but these ligands exhibit no unusual bond lengths or angles.
In conclusion, (1) provides another example of the ability of the tetrafluoroborate anion to act as a
ligand to transition metals. Concerning our original intent in carrying out the reaction leading to the formation of (1), we note that the facile hydrolysis of the tris(pyrazolyl)borate ligand in the presence of only small amounts of water may prove a troublesome feature of this increasingly popular class of tridentate ligands.

This research was supported by the National Science Foundation (CHE-8451670).

References

Beck, W. \& Schloter, K. (1978). Z. Naturforsch. Teil B, 33, 1214-1222.
Brown, D. H., Nuttall, R. H., McAvoy, J. \& Sharp, D. W. A. (1966). J. Chem. Soc. A, pp. 892-896.

Brown, D. S., Lee, J. D. \& Melsom, B. G. A. (1967). J. Chem. Soc. Chem. Commun. pp. 369-371.
Burch, R. R., Calabrese, J. C. \& Ittel, S. D. (1988). Organometallics, 7, 1642-1648.
Gaughan, A. P. Jr, Dori, Z. \& Ibers, J. A. (1974). Inorg. Chem. 13, 1657-1667.
Legzdins, P. \& Martin, D. T. (1983). Organometallics, 2, 1785-1791.

Mattson, B. M. \& Graham, W. A. G. (1981). Inorg. Chem. 20, 3186-3189.
Olgemöller, B., Bauer, H., Löbermann, H., Nagel, U. \& Beck, W. (1982). Chem. Ber. 115, 2271-2286.

Rheingold, A. L., Wu, G. \& Heck, R. F. (1987). Inorg. Chim. Acta, 131, 147-150.
Sheldrick, G. M. (1987). SHELXTL-PLUS Crystallographic System. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Stout, J. W. \& Reed, S. A. (1954). J. Am. Chem. Soc. 76, 5279-5281.
Tomlinson, A. A. G., Bonamico, M., Dessy, G., Fares, V. \& Scaramuzza, L. (1972). J. Chem. Soc. Dalton Trans. pp. 1671-1674.

Acta Cryst. (1990). C46, 1015-1017

Structure of Chlorodiphenyl[3-(p-tolylthio)propyl]tin

By Philip J. Cox*
School of Pharmacy, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB9 1FR, Scotland
Solange M. S. V. Domge-Harrison and Ian W. Nowell
School of Chemistry, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB1 1HG, Scotland
and R. Alan Howie, James L. Wardell and John McM Wigzell
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 10 May 1989; accepted 2 October 1989)

[^0]0108-2701/90/061015-03\$03.00
$10 \cdot 268(11), c=23 \cdot 201(12) \AA, V=2130 \cdot 5 \AA^{3}, Z=4$, $D_{x}=1.47 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu=$ $1.96 \mathrm{~mm}^{-1}, F(000)=952, T=293 \mathrm{~K}, R=0.0646$ for 2405 observed reflexions. The Sn atom is in a dis-
torted trigonal bipyramidal environment and is displaced 0.272 (1) \AA towards the Cl atom from the equatorial plane of three C atoms. The Cl and S atoms are axial. The intramolecular $\mathrm{Sn} \cdots \mathrm{S}$ distance is $3 \cdot 195$ (4) \AA representing a bond order of $0 \cdot 22$.

Introduction. Reactivities of $\mathrm{Ph}-\mathrm{Sn}$ bonds in $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S}(\mathrm{O})_{m} \mathrm{Ar}$ compounds $(n>2, m=0,1$ or 2) in cleavage reactions with halogens depend on the particular $\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S}(\mathrm{O})_{m} \mathrm{Ar}$ group (Wardell \& Wigzell, 1981). Nucleophilic assistance in the transition state of the cleavage step by the S, SO or SO_{2} groups was invoked to account for the differences in reactivities. This is despite sulfides, as soft bases, being generally poor donors towards tin halides (hard acids). To support the reactivity data, evidence was required that S in $X \mathrm{Ph}_{2} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{m} \mathrm{SAr}$ could act as an intramolecular donor. Thus, a crystal structure determination of $\mathrm{ClPh}_{2} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}$ - p was undertaken.

Experimental. The title compound was prepared in ca 70% yield by reaction of $\mathrm{Ph}_{3} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$ $\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}$ - p with MgCl_{2} in EtOH (Wardell \& Wigzell, 1982). A colourless crystal, $0.4 \times 0.4 \times$ 0.5 mm , was used. The cell dimensions were obtained from setting angles of 12 independent reflexions with $2 \theta \simeq 20^{\circ}$ on a Nicolet $P 3$ automated diffractometer using monochromated Mo $K \alpha$ radiation. The intensities of 3226 unique reflections with $2 \theta \leq 50^{\circ}$ were measured from $\omega-2 \theta$ scans and 2405 had $F>5 \sigma F$; $h 0-12, k 0-14, l 0-26$. The data were corrected for Lorentz and polarization effects; absorption was ignored. Two reference reflexions, monitored periodically, showed no significant variation in intensities.

The structure was determined by the heavy-atom method (Patterson function) which revealed the approximate position of the Sn atom. The remaining non-H atoms were located from successive difference syntheses using SHELX76 (Sheldrick, 1976). All H atoms were located but given ideal geometry with $\mathrm{C}-\mathrm{H}=1.00(2) \AA$ and allowed to ride on attached C atoms. Full-matrix least-squares calculations on F with anisotropic thermal parameters for the $\mathrm{Sn}, \mathrm{Cl}, \mathrm{S}$ and C atoms and a common isotropic thermal parameter for the H atoms converged at $R=0.0646$, $w R=0.0673$. Refinement with all coordinates inverted converged at $R=0.0653, w R=0.0683$, confirming the original absolute configuration (Hamilton, 1965). Atomic scattering factors and anomalous-dispersion terms from SHELX76. Final $w=2 \cdot 4704 /\left[\sigma^{2}(F)+0.001000 F^{2}\right], \quad \Delta / \sigma<0 \cdot 1, \quad$ final $\Delta \rho_{\text {max }}=0.6, \quad \Delta \rho_{\text {min }}=-0.5 \mathrm{e} \AA^{-3}$. Molecular geometries were generated by the $G X$ package (Mallinson \& Muir, 1985).

Discussion. The structure of the title compound is shown in Fig. 1. Final atomic parameters are listed in Table 1 and bond lengths and angles in Table 2.* The S atom is coordinated to tin to give a pentacoordinated Sn atom in the discrete monomeric five-membered ring chelate complex. The $\mathrm{Sn}-\mathrm{S}$ bond length is 3.195 (4) \AA; this is slightly longer than those in $\left(\mathrm{ClMe}_{2} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~S}$ [3.097 (4) and $3 \cdot 118$ (4) \AA] (Jurkschat et al., 1988). The weaker $\mathrm{Sn} \cdots$ S interaction in $\mathrm{ClPh}_{2} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-p$ reflects the weaker donor ability of alkyl aryl sulfides compared with dialkyl sulfides. The sum of the covalent radii for Sn and S is $2.44 \AA$ while the sum of the van der Waals radii is $3.9 \AA$. Tin-sulfur distances in $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{SSnSCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{~S}(\mathrm{Sn}-\mathrm{S}$ and $\mathrm{Sn} \cdots \mathrm{S}=2.42$ and $3.13 \AA$) reflect a typical single-bond length and a weaker coordinate-bond length (Drager, 1976). Formal bond orders for $\mathrm{Sn}-$ element (E) coordinations have been calculated (Drager, 1976) from the coordinate-bond length [$d(\operatorname{Sn} \cdots E)]$ and the typical single-bond length $\left[d(\mathrm{Sn}-E)_{\mathrm{av} .}\right]$, viz. bond order $=\left[d(\mathrm{Sn}-E)_{\mathrm{av}}\right]+1-$ $[d(\mathrm{Sn} \cdots E)]$.

On the basis of an average value for an $\mathrm{Sn}-\mathrm{S}$ single-bond length of $2.42 \AA$, the formal bond order for $\mathrm{Sn} \cdots \mathrm{S}$ in the title compound is $\mathbf{0 . 2 2}$.

An analogous calculation for $\mathrm{Me}_{2} \mathrm{SnClCH}_{2} \mathrm{CH}_{2}{ }^{-}$ $\mathrm{CH}_{2} \mathrm{PPhBu}^{t}$ provided a formal $\mathrm{Sn} \cdots \mathrm{P}$ bond order of 0.44 (Weichmann, Meunier-Piret \& Van Meerssche, 1986) compared to values of 0.6 to 0.7 for triorganotin halide complexes involving an intra- or intermolecular $\mathrm{Sn} \cdots \mathrm{N}$ or $\mathrm{Sn} \cdots \mathrm{O}$ coordination. As expected, higher values are found for O and N donors (both hard bases) than for S and P donors (soft bases) towards a hard acid.

The structure of $\mathrm{ClPh}_{2} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}$ - p is best described as a distorted trigonal bipyramid with S and Cl atoms axial. The displacement of the

[^1]

Fig. 1. The atomic arrangement in the molecule.

Table 1. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic values of the anisotropic temperature factor coefficients $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$U_{\text {eq }}$
Sn	$0 \cdot 69158$ (9)	$0 \cdot 21143$ (8)	0.39026 (3)	0.045
S	1.0001 (4)	0.0593 (4)	0.3737 (2)	0.073
Cl	$0 \cdot 4781$ (4)	0.3508 (4)	0.4124 (2)	0.065
C(1)	0.6167 (16)	0.0409 (12)	0.4353 (5)	0.051
C(2)	0.701 (2)	-0.015 (1)	0.477 (1)	0.070
C(3)	0.647 (2)	-0.120 (2)	0.508 (1)	0.091
C(4)	0.493 (3)	-0.164 (2)	0.494 (1)	0.101
C(5)	0.415 (3)	-0.105 (2)	0.452 (1)	0.093
C(6)	0.4726 (17)	-0.0011 (15)	0.4237 (6)	0.065
C(7)	0.6654 (11)	$0 \cdot 1967$ (14)	$0 \cdot 2995$ (5)	0.049
C(8)	0.7059 (16)	0.2963 (14)	0.2634 (5)	0.059
$\mathrm{C}(9)$	0.6926 (18)	0.2826 (15)	$0 \cdot 2039$ (6)	0.070
C(10)	0.6397 (18)	$0 \cdot 1665$ (18)	$0 \cdot 1820$ (6)	0.076
C(11)	0.6026 (17)	0.0661 (17)	0.2169 (7)	0.069
C(12)	0.6142 (16)	0.0797 (14)	0.2756 (6)	0.058
C(13)	0.8550 (15)	0.3378 (17)	0.4298 (7)	0.071
C(14)	1.0176 (15)	$0 \cdot 3127$ (17)	0.4118 (7)	0.076
C(15)	1.0734 (16)	$0 \cdot 1734$ (20)	0.4221 (6)	0.084
C(16)	1.0740 (13)	$0 \cdot 1077$ (13)	$0 \cdot 3048$ (6)	0.055
C(17)	1-1982 (16)	$0 \cdot 1845$ (13)	$0 \cdot 2996$ (6)	0.060
C(18)	1-2481 (17)	0.2187 (17)	0.2443 (7)	0.070
C(19)	$1 \cdot 177$ (2)	0.171 (1)	$0 \cdot 196$ (1)	0.073
C(20)	1.0559 (16)	0.0973 (16)	0.2014 (7)	0.068
C(21)	1.000 (2)	0.063 (2)	0.256 (1)	0.078
C(22)	1.236 (2)	0.207 (2)	0.136 (1)	$0 \cdot 109$

Sn atom from the equatorial plane $[\mathrm{C}(1), \mathrm{C}(7)$, $\mathrm{C}(13)$] is $0.272(1) \AA$, compared to the ideal tetrahedral value of $0.74 \AA$, based on average $\mathrm{Sn}-\mathrm{C}$ bond lengths of $2.41 \AA$. This represents a 63% displacement towards a trigonal bipyramidal array. The sum of the equatorial $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles is $356.2(5)^{\circ}$ and the axial angle $\mathrm{Cl}-\mathrm{Sn}-\mathrm{S}$ is $171 \cdot 1$ (2) ${ }^{\circ}$. The $\mathrm{C}-\mathrm{Sn} \cdots \mathrm{S}$ angles are $76 \cdot 1$ (4), $86 \cdot 0$ (4) and $86 \cdot 6(3)^{\circ}$. The $\mathrm{C}(7)-\mathrm{Sn}-\mathrm{C}(13)$ bond angle [122.6(5) ${ }^{\circ}$] indicates a widening to allow the $\mathrm{S} \cdots \mathrm{Sn}$ interaction.
The $\mathrm{Sn}-\mathrm{Cl}$ bond length $[2 \cdot 442(4) \AA$] is at the lower end of the range usually found for other pentacoordinate tin complexes, e.g. $2 \cdot 494$ (2) \AA in $\mathrm{ClMe}_{2} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{PPhBu}^{t}$ (Weichmann et al., 1986), 2.449 (1) \AA in $\mathrm{ClPhBuSnSC}(\mathrm{S}) \mathrm{NEt}_{2}$ (Weir \& Kumar Das, 1985) and $2.475(2) \AA$ in $\left(\mathrm{Ph}_{3} \mathrm{SNCl}\right)_{2}-$ $\left(\mathrm{OPPh}_{2} \mathrm{CH}_{2}\right)_{2}($ Pelizzi \& Pelizzi, 1980) but considerably shorter than in $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{SnCl}$, $2 \cdot 613$ (7) \AA (Jurkschat, Tzschach, Meunier-Piret \& Van Meerssche, 1985). In tetrahedral fourcoordinate triorganotin chlorides, $\mathrm{Sn}-\mathrm{Cl}$ bond lengths are shorter, e.g. 2.3538 (14) and $2 \cdot 3557$ (14) \AA in $\mathrm{Ph}_{3} \mathrm{SnCl}$ (Tse, Lee \& Gabe, 1986) and $2 \cdot 380(3) \AA$ in $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CH}\right]_{3} \mathrm{SnCl}$ (Gymane, Lappert, Miles, Carty \& Taylor, 1977).

Table 2. Bond lengths (\AA) and valency angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Sn}-\mathrm{Cl}$	$2 \cdot 442$ (4)	$\mathrm{Sn}-\mathrm{C}(1)$	$2 \cdot 145$ (12)
$\mathrm{Sn}-\mathrm{C}(7) \quad 2$	$2 \cdot 119$ (10)	$\mathrm{Sn}-\mathrm{C}(13)$	$2 \cdot 161$ (15)
$\mathrm{S}-\mathrm{C}(15) \quad 1$	1.749 (17)	$\mathrm{S}-\mathrm{C}(16)$	1.799 (13)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$	1.366 (18)	$\mathrm{C}(1) \mathrm{C}(6)$	1.381 (19)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$	$1 \cdot 39$ (2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.48 (3)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$	1.33 (3)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.36 (3)
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$	1.377 (17)	$\mathrm{C}(7)-\mathrm{C}(12)$	1.397 (18)
$\mathrm{C}(8)-\mathrm{C}(9) \quad 1$	$1 \cdot 390$ (17)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 38$ (3)
$\mathrm{C}(10)-\mathrm{C}(11) \quad 1$	1.35 (3)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.370 (18)
$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$	1.532 (18)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.54 (3)
$\mathrm{C}(16)-\mathrm{C}(17) \quad 1$	$1 \cdot 370$ (17)	$\mathrm{C}(16)-\mathrm{C}(21)$	1.39 (3)
$\mathrm{C}(17)-\mathrm{C}(18) \quad 1$	1.394 (19)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.38 (3)
$\mathrm{C}(19)-\mathrm{C}(20) \quad 1$	1.33 (3)	$\mathrm{C}(19)-\mathrm{C}(22)$	1.54 (3)
$\mathrm{C}(20)-\mathrm{C}(21) \quad 1$	1.41 (3)		
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(1)$	97.5 (4)	$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(7)$	99.6 (3)
$\mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(13)$	95.1 (4)	$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(7)$	112.8 (5)
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(13)$	119.8 (5)	$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{C}(13)$	122.6 (5)
$\mathrm{C}(15)-\mathrm{S}-\mathrm{C}(16)$	$104 \cdot 5$ (7)	$\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(2)$	121.2 (10)
$\mathrm{Sn}-\mathrm{C}(1)-\mathrm{C}(6)$	$116 \cdot 9$ (9)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.5 (12)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 3$ (15)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.1 (15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121 \cdot 1$ (16)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.5 (18)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.3 (14)	$\mathrm{Sn}-\mathrm{C}(7)-\mathrm{C}(8)$	121.6 (9)
$\mathrm{Sn}-\mathrm{C}(7)-\mathrm{C}(12)$	120.0 (9)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	118.3 (10)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120.7 (12)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118.9 (12)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.3 (13)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 119.8 (14)
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	121.0(12)	$\mathrm{Sn}-\mathrm{C}(13)-\mathrm{C}(14)$	$115 \cdot 1$ (10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) 114.8 (12)	$\mathrm{S}-\mathrm{C}(15)-\mathrm{C}(14)$	113.6 (10)
$\mathrm{S}-\mathrm{C}(16)-\mathrm{C}(17)$	$122 \cdot 4$ (10)	$\mathrm{S}-\mathrm{C}(16)-\mathrm{C}(21)$	$117 \cdot 4$ (10)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$) $120 \cdot 3$ (12)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$) 119.1 (12)
$\mathrm{C}(17)-\mathrm{C}) 18)-\mathrm{C}(19)$	120.7 (14)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$) 119.8 (14)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(22)$) 119.8 (14)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(22)$) 120.3 (14)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$) 121.3 (14)	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{C}(20)$) 118.8 (14)

References

Drager, M. (1976). Z. Anorg. Allg. Chem. 423, 53-66.
Gymane, M. J. S., Lappert, M. F., Miles, S. J., Carty, A. J. \& Taylor, N. J. (1977). J. Chem. Soc. Dalton Trans. pp. 20092015.

Hamliton, W. C. (1965). Acta Cryst. 18, 502-510.
Jurkschat, K., Schmid, B., Dybiona, M., Baumeister, U., hartung, H. \& Tzschach, A. (1988). Z. Anorg. Allg. Chem. 560, 110-118.
Jurkschat, K., Tzschach, A., Meunier-Piret, T. \& Van Meerssche, M. (1985). J. Organomet. Chem. 290, 285-289.
Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Pelizzı, C. \& Pelizzı, G. (1980). J. Organomet. Chem. 202, 411-420.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Tse, J. S., Lee, F. L. \& Gabe, E. J. (1986). Acta Cryst. C42, 1876-1878.
Wardell, J. L. \& Wigzell, J. McM. (1981). J. Organomet. Chem. 205, C24-C26.
Wardell, J. L. \& Wigzell, J. McM. (1982). J. Chem. Soc. Dalton Trans. pp. 2321-2326.
Weichmann, H., Meunier-Piret, J. \& Van Meerssche, M. (1986). J. Organomet. Chem. 309, 267-272.

Weir, C. \& Kumar Das, V. G. (1985). Inorg. Chim. Acta, 100, 245-249.

[^0]: Abstract. $\quad\left[\mathrm{Sn}(\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~S}\right)\right], \quad M_{r}=473 \cdot 6$, orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=8.943(11), \quad b=$

 * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52714 (18 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

